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ABSTRACT

The Radon transform (RT) on straight lines deals as mathe-
matical foundation for many tomographic modalities (e.g. X-
ray scanner, Positron Emission Tomography), using only pri-
mary radiation. In this paper, we consider a new RT defined
on a pair of half-lines forming a letter V, arising from the mod-
eling a two-dimensional emission imaging process by Comp-
ton scattered gamma rays. We establish its analytic inverse,
which is shown to support the feasibility of the reconstruc-
tion of a two-dimensional image from scattered radiation col-
lected on a one-dimensional collimated camera. Moreover, a
filtered back-projection inversion method is also constructed.
Its main advantages are algorithmic efficiency and computa-
tional rapidity. We present numerical simulations to illustrate
the working. To sum up, the V-line RT leads not only to a
new imaging principle, but also to a new concept of detector
with high energetic resolution capable to collect the scattered
radiation.

Index Terms— Radon transforms, image reconstruction,
nuclear imaging, tomography.

1. INTRODUCTION

Collecting first order Compton scattered radiation by a two-
dimensional gamma camera from an object-medium for
three-dimensional imaging purposes [1, 2] has turned out
to be a recent attractive alternative to conventional tomo-
graphic emission imaging, which uses only primary (or non-
scattered) radiation. This new imaging principle is modeled
by the so-called Conical Radon Transform (CRT) and has
been supported by numerical simulations [2]. Later on, ex-
tensions of this idea have been proposed in various directions
[3]. In this paper, we describe the implementation of this idea
in the context of a one-dimensional gamma camera, which
leads to a two-dimensional version of the CRT, which we call
V-line Radon transform. The related imaging process may be
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realized, for example, on two-dimensional structures in mate-
rial non-destructive testing as well as in biomedical imaging.
Ideally, one can think of a radiation emitting flat object (or
slice), in which Compton scattered radiation is collected by a
collimated linear detector, in order to reconstruct the primary
radiation source distribution of this object (see Figure 1).

Fig. 1. Experimental setup and parameters used.

Section 2 shows how the image formation process by
emission Compton scattered radiation is modeled and how
the collected data by a linear collimated detector leads to a
Radon transform on a pair of half-lines forming a letter V.
This new integral transform, along with the conical Radon
transform [1, 2, 3, 4], which we introduced a few years ago,
becomes a new member of the rich family of Radon trans-
forms [5], known so far in integral geometry as well as in
tomographic imaging. Originally this V-line Radon trans-
form has been proposed a decade ago by Basko et.al. [6] to
model image formation in a two-dimensional Compton cam-
era. However this Basko transform is in fact a V-line Radon
transform with swinging axis around a detection site whereas



the one considered here has a fixed axis direction. We give
its properties, work out its kernel and its adjoint transform.
In particular we establish its inverse under its analytical form
and its corresponding filtered back-projection form. This last
form has the advantage of reconstructing the image by fast
algorithms. In section 3, we present numerical simulations on
image reconstruction including a thyroid phantom to support
the feasibility of this imaging process and present related
comments. The paper ends with a short conclusion on the
obtained results and opens some future research perspectives.

2. THE V-LINE RADON TRANSFORMATION

2.1. Image formation and the V-line Radon transform

Consider a 2D-object containing a non-uniform radioac-
tivity source distribution, which is represented by a non-
negative continuous function f(x, y) with bounded support
in {R2|y > 0}. A collimated linear detector is set parallel
to the plane of the object. It collects only outgoing radia-
tion from the object which is parallel to the direction of the
collimator holes (see Figure 1).

If the detector is set to absorb gamma photons at energies
below the energy of primary photons emitted by the object,
the photons have undergone a Compton scattering at a site
M in the bulk of the object under a scattering angle ω. We
assume that higher order scattering is neglected since it occurs
with a much smaller probability.

The photon flux density at a detecting site D is due to the
sum of the contribution of all emitting object point sources
located on two half-lines starting at a site M and making an
angle ω with the collimator axis direction, for all possible M
along the axis of the collimator at D.

Let f(x, y) be an activity density function (object func-
tion), f̂(ξ, ω) the measured photon flux density at D under a
scattering angle ω. Computing the photon flux density with
the two-dimensional photometric law in the absence of radi-
ation attenuation and for constant electronic density ne, we
can express f̂(ξ, ω) as

f̂(ξ, ω) = K(ω)
∫ ∞

0

dη

η
TV f(ξ, η, ω), (1)

where K(ω) = ne P (ω), P (ω) differential Compton scatter-
ing cross-section (Klein-Nishina formula [7, 8]), and

TV f(ξ, η, ω) =
∫ ∞

0

dr

r

[f(ξ + r sinω, η + r cos ω) + f(ξ − r sinω, η + r cos ω)] .
(2)

In the last integral, f(x, y) is integrated on a discontinuous
line having the form of a V-line with symmetry axis parallel
to a fixed direction. Thus image formation by Compton scat-
tered radiation in two dimensions leads to a new concept of
Radon transform on a V-line.

2.2. Definition

We examine a simplified case of V-line Radon transform, for
which η = 0. This transform in fact models the imaging pro-
cess of a collimated one-dimensional Compton camera. Pri-
mary radiation emitted from the object bulk is scattered by
a linear scattering detector, which lies along the Ox-axis of
a cartesian coordinate system and collected later by a sec-
ond absorbing detector along the vertical direction. This is
of course an ideal hypothetic research camera, for which the
V-line Radon transform describes the imaging process.

The TV transform of an activity density function f(x, y),
defined as the integral of this function along a V-line, each
branch of which making an angle ω with the vertical direction,
gives the detected photon flux density

TVf(ξ, ω) =
∫ ∞

0

dr

r

[f(ξ + r sinω, r cos ω) + f(ξ − r sinω, r cos ω)], (3)

for ξ ∈ R and 0 ≤ ω < π/2. For ease of notation we set
TVf(ξ, ω) = g(ξ, ω) and observe that, because of the as-
sumption on the support of f , the integral of eq. (3) is well-
defined. ξ gives the position of the vertex on the Ox axis.
The factor 1/r in the integrand accounts for the photomet-
ric law of photon propagation in two dimensions. From now
on, we shall absorb K(ω) in the definition of f to keep the
writing simple. Under the change of variables t = tanω and
z = r cos ω, equation (3) reads

g(ξ, ω) = G(ξ, t) =
∫ ∞

0

dz

z
[f(ξ + tz, z) + f(ξ − tz, z)] .

(4)
It is also useful to rewrite it as an integral transform, i.e.

g(ξ, ω) =
∫

R×R+
dx dy k(x, y; ξ, ω) f(x, y), (5)

with the kernel

k(x, y; ξ, ω) =
cos ω

y
δ(cos ω|x− ξ| − y sinω).

2.3. The inverse transform TV−1

The inverse transform TV−1 can be worked out using Fourier
transforms f̃(q, y) (resp. g̃(q, ω)) with respect to the variable
x (resp. ξ) in f(x, y) (resp. g(ξ, ω))), i.e.

g(ξ, ω) =
∫ ∞

−∞
dq g̃(q, ω) exp(2iπqξ), (6)

and

f(x, y) =
∫ ∞

−∞
dq f̃(q, y) exp(2iπqx). (7)

Then equation (3) becomes

g̃(q, ω) =
∫ ∞

0

dr

r
f̃(q, r cos ω) 2 cos (2πqr sinω). (8)



Upon change to variables z and t, and defining G̃(q, t) =
g̃(q, ω) with F̃ (q, z) = f̃(q, z)/z one finds that

G̃(q, t) =
∫ ∞

0

dz F̃ (q, z) 2 cos (2πqzt), (9)

which is the cosine-Fourier transform. Thus we can write
down the inverse formula immediately

F̃ (q, z) = 2|q|
∫ ∞

0

dt cos(2πqtz) G̃(q, t). (10)

The inverse transform may be written as an integral transform
with the inverse kernel

k−1(x, z|ξ, t) = − z

2π2

[
1

(x− ξ + zt)2
+

1
(x− ξ − zt)2

]
.

(11)
As it stands, this kernel is to be understood as a generalized
function, or distribution and the corresponding integral should
be taken as a Cauchy principal value.

2.4. Filtered back-projection inversion method (FBP-IM)

In this section we establish another formulation of the inver-
sion procedure which lends itself more advantageous to al-
gorithmic implementation. We call it filtered back-projection
(FBP), due to its similarity to the one of standard Radon trans-
form, but the novelty is that the FBP is carried on the V-lines
but not on the straight lines. In the Radon transform the FBP
is an exact inversion formula obtained by combining the ac-
tion of the ramp filter and the back-projection operation of the
Radon transform. In this section, we will demonstrate that the
TV transform may be inverted essentially in the same way,
the ramp filter and the back-projection operator associated to
the TV operator playing an analogous role.

Technically the back-projection principle consists in as-
signing the value g(ξ, ω) to every point on the “projection”
V-line, which has given rise to this value, and then to sum
over all contributions for every V-line “projection”. More
precisely, we can say that the back-projection at angle ω in
(x, y) is the sum of projections at angle ω at the points ξ1 =
x + y tanω and ξ2 = x− y tanω, where (x, y) is projected:

Rω(x, y) = g (x + y tanω, ω) + g (x− y tanω, ω) . (12)

The back-projection of every projection defines the back-
projection operator TV# which is obtained by summing over
every angle ω the expressions given in equation (12). Here a
y-factor appears because of the measure dr/r in the definition
of the projections (3).

Now the action of the ramp filter operator Λ over a func-
tion f(x, y) in the first variable is defined in the Fourier do-
main by

Λ̃f(q, y) = |q|f̃(q, y), (13)

where the Fourier transform is taken on the first variable x.
From equation (10) we have

f(x, y) = y

∫ ∞

0

dt [(Λg)(x + ty, t) + (Λg)(x− ty, t)] .

(14)
In terms of the angle ω, the inversion formula reads now

f(x, y)
y

=
∫ π/2

0

dω

cos 2ω

[(Λg)(x + y tanω, ω) + (Λg)(x− y tanω, ω)]. (15)

Setting Mω = g(ξ, ω)/cos 2ω and knowing that

TV#g(x, y) =
1
y

∫ π/2

0

dω

[g (x + y tanω, ω) + g (x− y tanω, ω)], (16)

we finally recover the original density f(x, y) by a filtered-
back projection as f(x, y) = y2 (TV#MωΛ TVf)(x, y).

3. NUMERICAL SIMULATIONS

We present now the results of numerical simulations. The
original image (Fig. 2) of size 512 × 512 of length units is
a thyroid phantom with small nodules. Fig. 3 shows the TV
transform of a thyroid phantom with angular sampling rate
dω = 0.005 rad and 314 projections (π/2/0.005 = 314)
which are the images of Compton scattered radiation on the
camera in terms of the distance ξ and the scattering angle
ω. The reconstruction using FBP is given in Fig. 4. The
artifacts are due to the limited number of projections. More-
over, back-projection on V-lines generates more artifacts
than back-projection on straight lines, because of more spu-
rious line intersections. A choice of a smaller dω would
improve image quality. Despite these limitations, the small
structures in the object are clearly reconstructed. This result
illustrates undoubtedly the feasibility of the new imaging
modality, for which the main advantage resides in the use
of a one-dimensio- nal non-moving Compton camera for
two-dimensional image processing.

4. CONCLUSION

In this paper, a new class of Radon transform defined on a
discontinuous line, having the shape of a V letter is presented.
We construct its analytic inverse transform as well as the cor-
responding filtered back-projection inversion method. They
allow two-dimensional image reconstruction from scattered
radiation collected by a one-dimensional collimated camera.
We have also performed numerical simulations to prove its
practical viability. The obtained results provide a stimuli for
tackling the case of the swinging V-line Radon transform, for
a two-dimensional Compton camera imaging, as proposed by



[6]. Furthermore, the extension of this transform to a family
of cones with swinging axis around a site in R3, for a con-
crete gamma camera without mechanical collimator, poses a
real mathematical challenge to overcome in the future.
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ihre Integralwerte längs gewisser Mannigfaltikeiten
Ber.Verh.Sachs.Akad.Wiss. Leipzig-Math.-Natur.Kl., vol.
69, pp. 262-277, 1917.

[6] R. Basko, G.L. Zeng, G. T. Gullberg, Analytical recon-
struction formula for the one-dimensional Compton cam-
era, IEEE Trans. Nucl. Sci., vol.44, pp. 1342-1346, 1997.

[7] R D Evans, The atomic nucleus. New York, McGraw-
Hill, 1955.

[8] Barrett H H, The Radon Transform and its Applications
in Progress in Optics, vol. 21, pp. 219-286, Ed. E. Wolf,
North Holland, 1984.

Fig. 2. Original thyroid phantom.

Fig. 3. The TV transform of the thyroid image shown in Fig-
ure 2 with dω = 0.005 rad.

Fig. 4. FBP-IM reconstruction (dω = 0.005 rad).


