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 MRI-based Pseudo-CT Generation Using Sorted 
Atlas Images in Whole-body PET/MRI
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Abstract– In this work, we propose a novel approach for MRI-
based generation of pseudo-CT images in whole-body PET/MRI 
based on Hofmann’s pattern recognition and atlas registration 
approach. The major improvement emanates from sorting regis-
tered atlas images based on voxelwise local normalized cross-
correlation and choosing the most similar atlas image for Gaussi-
an process regression (GPR) analysis. Furthermore, prior 
knowledge derived from the correlation between lung volume 
and attenuation coefficients was embedded in the GPR kernel for 
accurate patient-specific prediction of lung attenuation coeffi-
cients. Modifying the GPR algorithm improved the similarity 
index of bone extraction from 0.55 to 0.61 and enabled significant 
bias reduction of tracer uptake (SUV) in bony regions. Incorpo-
rating prior knowledge about lung volume in the GPR algorithm 
resulted in SUVmean bias reduction from 8.9% to 4.1% in the 
whole lung region. Overall, the proposed algorithm provided 
more accurate PET quantification in the lungs and bony regions.

I. INTRODUCTION

The quantitative capabilities of PET/MRI need to be improved 
and validated to enable the realization of the full potential of 
this hybrid technology in clinical and research setting [1]. The 
aim of this study is to present a novel MRI-based attenuation 
correction approach in whole-body PET/MRI. This approach 
builds on Hofmann’s algorithm [2] to add additional prior 
information enabling improved performance. To this end, MR 
images of 14 patients are non-rigidly registered to target MR 
image. The obtained transformation fields are then used to 
warp the corresponding CT images. Local normalized cross-
correlation is employed to find the most similar image in the 
atlas data set for each voxel. Gaussian process regression is 
then performed on the selected atlas. Moreover, the variability 
of lung attenuation coefficients across patients, prior 
knowledge derived from the correlation between lung attenua-
tion coefficients and lung volume was incorporated in the 
regression process to estimate more accurately patient-specific 
lung attenuation coefficients.

II. MATERIAL AND METHODS

A. Data preparation
The acquired MR images contain a relatively high level of 
noise, corruption due to the low frequency bias field and inter-
patient intensity inhomogeneity [3]. As such, the presence of 
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any aforementioned source of intensity uncertainty in MR 
images might bias the pseudo-CT generation result. To over-
come these prospective sources of error, in-phase images of all 
patients underwent the following pre-processing steps.

Gradient anisotropic diffusion filtering using the following 
parameters: conductance = 4, number of iterations = 10 and 
time step = 0.01. This is an edge preserving smoothing algo-
rithm that adjusts the conductance term to produce large diffu-
sion inside regions where the gradient magnitude is relatively 
small (homogenous regions) and lesser diffusion in regions 
where the gradient magnitude is large (i.e. edges).
N4 bias field correction [4]: B-spline grid resolution = 400, 
number of iterations = 200 (at each grid resolution), conver-
gence threshold = 0.001, B-spline order = 3, spline distance = 
400, number of histogram bins = 256 and shrink factor = 3.

Histogram matching [5]: Histogram level = 512 and match 
points = 64. In order to get the best result from histogram 
matching, it is recommended to exclude background air voxels 
of both reference and target images before processing. 

Normalization to the average water intensity: To overcome 
inter-patient MR intensity non-uniformity, in addition to his-
togram matching, each in-phase image was normalized to the 
average intensity of the corresponding water image. To this 
end, fuzzy C-means clustering [6] was employed to segment 
Dixon water-only images into 3 distinct classes. The obtained 
mask of the third class on water-only image was used to calcu-
late the mean intensity of the corresponding in-phase image. 
The latter was then used to normalize the in-phase image.

The external body contour was determined by applying a 3D 
snake active contour algorithm on the in-phase MR images 
[7]. Identification and segmentation of the lungs was per-
formed through connected-component analysis of the lower 
intensity in the inner part of the body using the ITK-SNAP 
image processing software [8]. 

Fig 1. (A) Dixon image of the target patient. (B) Atlas-selection matrix where each color 
corresponds to one image in the atlas data set.

We used a leave-one-out cross-validation (LOOCV) ap-
proach, that for each individual patient all the remaining thir-
teen in-phase MR images were deformably registered to the 
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target image using the Elastix package [9]. The alignment was 
performed by employing a combination of rigid registration 
based on maximum mutual information and non-rigid registra-
tion as described previously [10].

Fig.2. Correlation between lung volume and lung attenuation coefficients.

B. Gaussian Regression Process

Hofmann’s approach [2] uses the Gaussian covariance ker-
nel function where W is a weighing factor for patches defined 
on MR images (PMR), X is the voxel position and Pseg is the 
patch from 5-class segmented MRI.
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In the proposed approach, the Gaussian kernel (Eq. 1) is di-
vided into two separate kernels, one for non-lung tissues (Eq. 
2) and one for lung tissues (Eq. 5). In the non-lung kernel, 
instead of rectangular patches on MR (PMR) and segmented 
MR (Pseg), only the voxel value (MRC) in the clustered MR 
image obtained by K-mean + Markov random field is used, 
while the term related to the position remains intact.
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In the next step, all the registered MR images are compared 
voxelwise to the target MR image using local normalized 
cross correlation algorithm (Eq. 3). Since this algorithm is 
markedly sensitive to noise when it comes to voxel level, the 
k-nearest neighbour criterion (Eq. 4) was utilized to determine 
the most similar atlas to that voxel of the target image. The 
result is called atlas-selection matrix R(x) (Fig. 1), where each 
color corresponds to a single image in the atlas data set. Sub-
sequently, the learning process and pseudo-CT generation (Eq. 
2) is performed through most similar image in atlas data set 
for each voxel. 
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It was noticed that there is a correlation between lung vol-
ume and its attenuation coefficient (Fig. 2). In this light, the 
term considering the volume of lung (V) was embedded in 
Gaussian process regression to estimate the lung attenuation 
coefficient more accurate and patient-specific.
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C. Quantitative evaluation
The quantitative accuracy of the proposed approach was as-
sessed using 14 clinical studies of patients, who underwent 
whole body 18F-FDG PET/MR and PET/CT for staging of 
head and neck malignancies. PET images were reconstructed 
using the e7 tool (Siemens Healthcare, Knoxville, TN) using 
attenuation weighted, ordered subset-expectation maximiza-
tion (AW-OSEM) iterative reconstruction algorithm using 
default parameters (4 iterations, 8 subsets, and a post-
processing Gaussian kernel with a FWHM of 5 mm) adopted 
on the multimodality workstation (Siemens Healthcare, Hoff-
man Estates, IL, USA). Image reconstruction was performed 
four times for each clinical study: PET images corrected for 
attenuation using CT (PET-CTAC) used as reference, using 
the 3-class attenuation map (PET-MRAC3c) [11] obtained 
from the Ingenuity TF PET/MR scanner (Philips Healthcare) 
[12], using the pseudo-CT generated by Hofmann’s approach 
(PET-HofmannAC) [2] and our proposed SAP (sorted atlas 
selection) approach (PET-SAPAC). A nuclear medicine phy-
sician drew manually the VOIs on regions of normal physio-
logic uptake, six regions in the lungs, liver, spleen, cerebel-
lum, 2 bony structures (cervical vertebrae 6 and dorsal verte-
brae 5), aorta, and malignant lesions. The differences between 
the attenuation correction techniques were quantified in terms 
of change in the standard uptake value (SUV). The SUVs were 
calculated by dividing the activity concentration in each VOI 
by the injected activity divided by body weight.

The assessment of the accuracy and robustness of extracted 
bones using the proposed (SAP) and Hofmann’s approaches 
was performed through comparison with the bone segmented 
from the corresponding CT images. Bone segmentation was 
performed by applying a threshold of 180 HUs on the generat-
ed pseudo-CT and corresponding CT images. The validation 
of bone segmentation is reported using five volume/distance-
based metrics: Dice similarity (DSC) [13], relative volume 
difference (RVD), Jaccard similarity (JC), sensitivity (S) and 
mean absolute surface distance (MASD).


 � � �
� �

� � � �

 � � � ��� 	

� � � �

� �
                     


 � � �
� �

� �
      
 � � �

� �

� �


 � � �
��
 � ���� ��
 � �

�

where A is the bone segmented from the reference CT image 
and M denotes the extracted bone from the pseudo-CT atten-
uation maps. Dave(SA,SM) is the average direct surface distance 
from all points on the CT bone surface SA and to the pseudo-
CT bone surface SM. 
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The accuracy of the predicted lung attenuation coefficient 
was evaluated by calculating the average lung attenuation 
coefficient on the obtained pseudo-CT images using a lung 
mask and comparing it with the corresponding CT images for 
each individual patient. Shapiro-Wilk test was used to exam-
ine the null hypothesis that the estimates follow a normally 
distributed population and the obtained results were consid-
ered statistically significant if the p-value was less than 0.05.

Fig.3. A: Corresponding CT image. B: Target MR image. C: Pseudo-CT 
Hofmann approach D: Pseudo-CT obtained from SAP approach.�

III. RESULTS

Fig. 3 depicts the pseudo-CT images generated using Hof-
mann’s and our proposed approach. The mean similarity index 
calculated for extracted bone on the basis of 14 patients is 
0.58±0.09 and 0.65±0.07, respectively (table 1). The repre-
sentative extracted bone slices from Hofmann’s approach 
pseudo CT and the new proposed method is illustrated in Fig. 
4 along with reference CT image and distance error map. This
improvement is due to the sorting the registered atlas data set 
based on local normalized cross-correlation that resulted in 
more patient specific pseudo-CT. Incorporating the prior 
knowledge of the lung volume in the regression process ren-
dered the estimated attenuation coefficients of the lungs for 
each patient closer to the reference (CT) (Fig. 5). It can be 
concluded that the proposed method is more accurate than 
averaging lung attenuation values over the whole atlas data 
set. The more accurate SUVmean estimates demonstrate the 
improvement of attenuation map in bony regions and cerebel-
lum and patient-specific derivation of lung attenuation coeffi-
cients with considerable lower standard deviation (Fig. 6). The 
mean SUV bias in the whole lung region decreased from 8.9% 
to 4.1%.

Table 1. Comparison of validation measures (mean±SD), Dice similarity 
(DSC), relative volume distance (RVD), Jaccard similarity (JC), Sensitivity 
(S) and mean absolute surface distance (MASD) between the bone extracted 
from Hofmann’s and proposed attenuation maps.

Hofmann SAP
DSC 0.58 ± 0.09 0.65 ±0.07
RVD (%) -36.6 ± 10.0 -30.7 ± 09.1
JC 0.35 ± 0.06 0.41 ±0.05
S 0.40 ± 0.15 0.48 ± 0.12
MASD (mm) 6.92 ± 3.1 4.81 ± 2.6

Fig 4. Representative slice of bone segmentation from MR image. A) Binary 
image of segmented bone from CT image B) segmented bone obtain from 
Hofmann pseudo-CT generation algorithm C) Segmented bone utilizing the 
new method D) Distance error map calculated from comparison of Hofmann 
pseudo-CT and E) new approach with the reference bone segmented on the 
CT image.

Fig. 5. 14 patients lung attenuation coefficients obtained using the new 
approach (SAP) compared to Hofmann’s approach and the reference (CT).�

IV. CONCLUSION

We proposed a new whole-body pseudo-CT generation ap-
proach exploiting the concept of co-registered atlas and pat-
tern recognition. The SAP technique improved bone extraction 
leading to more accurate SUV estimation, particularly in bony 
structures and lung regions even in the presence of malignant 
abnormalities. Future work will focus on further improvement 
of bone extraction accuracy through optimization of atlas 
fusion and reduction of the computational time needed for 
atlas registration through alignment of multiple atlas images 
using a single registration to render the technique practical for 
clinical usage.
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Fig. 6. Mean SUV uptake in different regions on the basis of Hofmann’s and
new pseudo-CT attenuation map.�
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