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KEY POINTS

� Cardiac and/or respiratory gating leads to enhanced noise levels, thus producing images with
reduced quality.

� Direct four-dimensional (4D) PET image reconstruction incorporating motion compensation
provides a very promising alternative to this problem.

� Awide-ranging choice of techniques are available in research settings but have not yet been used in
the clinic.

� The development of advanced 4D physical anthropomorphic phantoms and computational models
will benefit research in cardiac-gated and respiratory-gated PET imaging.
INTRODUCTION

Positron emission tomography (PET) is a powerful
modality for numerous oncologic and cardiac
imaging applications. However, when PET is
used for chest or upper abdomen examinations,
respiratory motion can lead to blurring and distor-
tion of the images. Cardiac imaging applications
also suffer from both cardiac and respiratory
movements of the heart. Much worthwhile
research has focused during the last decade on
developing motion compensation techniques to
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provide more accurate PET images1,2; e.g. for
the diagnosis and assessment of lung and upper
abdomen cancer. It is expected that better PET
images will lead to improved detection of small
lesions and enhance the ability to assess the
extent of the cancer. In some cases, more accu-
rate assessment of chest and upper abdomen
lesions may mean that patients can avoid the
trauma and expense of surgery. It is expected
that physicians will be able to make more informed
decisions about how to treat patients with cancer
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lesions in the chest and upper abdomen, particu-
larly when enhanced PET imaging is used in
conjunction with structural (CT or MR) scanning.
Similarly, in cardiac imaging applications, en-
hanced clinical tasks will be possible, as elabo-
rated shortly.
A solution to the problem of motion is to perform

cardiac and/or respiratory gating of the data, fol-
lowed by reconstructions of individual gated data-
sets. However, gating leads to enhanced noise
levels and images of reduced quality are generated,
which in turn can also lead to enhanced noise-
induced bias and variance in kinetic parameters.1

An advanced approach to PET imaging is to
move beyond pure gating and to obtain enhanced
images by making collective use of the gated data
sets. Two general schemes may be considered: (1)
postreconstruction registration and summation of
the independently reconstructed images (eg,3–7);
(2) incorporation of motion information within the
reconstruction algorithm: this latter approach is
broadly referred to as four-dimensional (4D) recon-
struction, which is the topic reviewed in this article.
Asma and colleagues8 and Chun and Fessler9

theoretically analyzed and compared postrecon-
struction versus 4D reconstruction approaches
with motion compensation, and showed that noise
variance in the latter is less than or comparable
with the variance in the former, and the gap
between them is larger when less regularization
is used8 and when the gate frames have signifi-
cantly different counts.9

Dynamic imaging and motion-compensated
imaging methods overlap in the sense that they
both deal with varying activity distributions over
time, and 4D methods have been developed for
both. The underlying bases of the two are different
and need to be distinguished from one another. In
particular, some types of motion (and thus certain
changes in voxel intensity) are physically/anatom-
ically impossible. 4D image reconstruction algo-
rithms applicable to dynamic imaging have been
reviewed elsewhere,10 whereas here we focus on
techniques to model and incorporate motion.
Overall, we believe that strategies attempting to
apply general 4D PET image reconstruction tech-
niques (such as use of temporal basis functions)
to motion compensation (eg, Refs.11,12) remain to
be further refined or constrained to ensure mean-
ingful reconstructions. Aiming to exploit the peri-
odic nature of cardiac motion, a promising
approach13 was to use temporal Fourier harmonic
basis functions to model voxel intensity variation
across the gates.
The first section of this article reviews application

of 4D image reconstruction methods to cardiac
imaging applications, which may involve cardiac
or respiratory gating. The next section reviews
applications beyond cardiac imaging (particularly,
oncology) involving respiratory motion correction
only. Some important areas of future research are
discussed at the end.
CARDIAC IMAGING APPLICATIONS

Cardiac movements introduce notable visual and
quantitative degradations in PET imaging: the
base of the heart typically moves 9 to 14 mm
toward the apex, and the myocardial walls thicken
from approximately 10 mm to more than 15 mm
between the end-diastole and end-systole.14 The
motivation behind motion correction in cardiac
imaging is two-fold:

i. To further improve the quality of cardiac PET
images (noise, resolution) so as to enhance
identifiability of radiotracer uptake defects in
the left ventricle (LV) by clinicians, because
regions of decreased radiotracer uptake can
indicate hibernating or infracted myocardial
tissue.15 This finding is also important when
applying quantitative measures of perfusion
and metabolic parameters in dynamic
compartmental modeling studies.16

ii. Measurement of motion itself can be useful for
characterizing cardiac function.17 Measures
such as ejection fraction and regional wall
thickening may be derived from a measure of
contractile motion in this way.

We first focus on efforts using cardiac gating
only (additional respiratory gating in the context
of cardiac imaging is discussed later). Post-
reconstruction motion correction approaches
involving nonrigid registration and summation of
individually gated cardiac images have been re-
viewed elsewhere.1,2,18
Cardiac Motion Estimation Methods

Cardiac motion (ie, the contraction of LV during the
cardiac cycle) was commonly described by rela-
tively global measures before techniques were
developed to estimate the dense motion vector
fields (ie, voxel-by-voxel point correspondences).
Global parameters such as ejection fraction,19

longitudinal shortening,20 radial contraction, and
wall thickening21 provide diagnostic information
about the cardiac function. Other than providing
a more elaborate description of cardiac motion,
a major objective of obtaining the dense motion
field is to compensate for motion in cardiac-
gated imaging and arrive at reduced blurring arti-
facts without intensifying noise levels.22–25
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Compared with emission tomography imaging,
tagged MR imaging provides a more favorable
environment for calculation of the dense motion
field (myocardial tagging involves production of
a spatial pattern of saturated magnetization, eg,
at end-diastole, and then imaging the resulting
deformation of the pattern as the heart contracts
through the cardiac cycle).26–28 The difference in
intensities between tagged and untagged regions
allows tracking of the motion of underlying tissues.
Young and colleagues29 presented a method for
tracking stripe motion in the image plane and
showed how the information could be incorpo-
rated into a finite-element model of underlying
deformation. The method provided a framework
to combine high-level global constraints (eg,
smoothness and connectivity) with low-level local
constraints (eg, dark, linear features). Park and
colleagues30 presented a technique using a class
of physics-based deformable models allowing
parameterized deformations that captured the
motion of the LV. Ozturk and McVeigh31 used 4D
B-splines to interpolate the motion between the
tracked myocardial points. The 4D displacement
field formed by combining the two-dimensional
(2D) fields, as derived from the short-axis and
long-axis image planes, could be used to track
the deformation of points anywhere within the
myocardium. Osman and colleagues32 proposed
a method that estimates cardiac motion applied
to spatial modulation of magnetization (SPAMM)-
tagged MR images. The SPAMM-tagged images
have a collection of distinct spectral peaks in the
Fourier domain, each of which contains informa-
tion about the motion in a certain direction. The
inverse Fourier transform of just one of these
peaks is a complex image, the phase of which is
linearly related to a directional component of the
true motion. These investigators defined the
harmonic phase (HARP) image to be the principle
value of the phase of the complex image and
used the HARP image to measure small displace-
ment fields. The main characteristic of this method
is its computational simplicity.

We discuss these methods for tagged MR
images not only for the completeness of the litera-
ture review on cardiac motion estimation but also
to resonate with the recent emergence of inte-
grated PET/MR scanners.33,34 Recent work by Pe-
tibon and colleagues35 applied cardiac wall motion
estimated from tagged MR images in PET image
reconstruction for simultaneous PET/MR. This
preliminary work reported improved perfusion
defect detection using a physical phantom.

For other imaging modalities, different exten-
sions of the classic optical flow approach of Horn
and Schunck36 have been commonly applied.
The optical flow technique assumes that a moving
point in a sequence of images does not change its
intensity. The classic approach invokes local Taylor
series approximations [using partial derivatives
with respect to the spatial and temporal coordi-
nates]. It was first applied directly to 2D cardiac
images in Refs.37,38 Because 2D motion is inade-
quate to describe cardiac motion vectors, three-
dimensional (3D) extension of the algorithm was
provided by Song and Leahy39 and Zhou and
colleagues40 on CT cardiac sequences. Klein and
colleagues3,9 used a nonuniform elastic regulariza-
tion function inspired from a linear elastic material
model.41 The motion field is regularized by an
energy function constraining the source volume
as if it were a physical elastic material being
deformed by external forces. In several works in
which simultaneous gated image reconstruction
and motion estimation were performed,25,30,42

algorithms including similar regularization via the
strain energy function were implemented for the
purpose of myocardium motion estimation. These
works reported improved noise and resolution
characteristics in the reconstructed images
(Fig. 1). In addition, Gravier and colleagues24 also
performed cardiac motion estimation via the
optical flow method, which they subsequently
incorporated as temporal regularization in 4D
image reconstruction, showing improved accuracy
of cardiac images without causing any significant
cross-frame blurring.

Optical flow techniques assume that a moving
point in a sequence of images does not change
its intensity. This assumption may be violated in
emission tomography because of the limited
spatial resolution (and the resulting partial volume
effect), particularly as the myocardium expands
and becomes thin in the end-diastolic phase. An
alternative is to invoke the continuity equation
describing conservation of mass (here, intensity),
resulting in an additional term relative to classic
optical flow (and sometimes referred to as
extended optical flow)39; such an approach was
recently used by Dawood and colleagues43 for
cardiac motion estimation.

Optical flow algorithms are known for the aper-
ture problem wherein there is not enough informa-
tion in a small area to uniquely determine motion
perpendicular to the direction of the local gradient
of the image intensity.44,45 This problem is
commonly tackled via introduction of additional
constraints. Nonetheless, the true motion cannot
be recovered without a priori knowledge of the
motion. Klein and colleagues9 performed qualita-
tive analysis on tracking the cardiac twist in the
healthy PET myocardium. The motion field esti-
mated from PET images, cine MR images, and



Fig. 1. Sagittal slice of (A) the NCAT phantom (truth), (B) image reconstructed from the proposed integrated
image reconstruction and motion (RM) estimation algorithm, and (C) image reconstructed using the conventional
OSEM (ordered subset expectation–maximization) algorithm plus 4D postreconstruction filtering. Profiles of the
images along the section indicated by the line. (Reprinted from Mair BA, Gilland DR, Sun J. Estimation of images
and nonrigid deformations in gated emission CT. IEEE Trans Med Imaging 2006;25(9):1140; with permission.)
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tagged MR images was compared. The conclu-
sion was that the component of motion normal to
the ventricular surfaces could be accurately esti-
mated; however, because of uniformity in the
healthy myocardium in PET imaging, the torsion
component was considerably more difficult to
track. Cine MR images with higher resolution did
not augment the ability of the optical flow tech-
nique in terms of catching the twist motion. Only
tagged MR images had sufficient features for the
algorithm to accurately estimate the motion.
The performance of the optical flow technique to

estimate cardiac motion from emission tomo-
graphy images was evaluated quantitatively by
Tang and colleagues.46 Using the 4D NCAT
(NURBs (nonuniform rational B-splines) Cardiac
Torso) phantom with a known motion vector
field, the study confirmed that the optical flow
technique could not appropriately estimate
tangential motion for uniform myocardial perfu-
sion patterns. It also showed that without detec-
tion of the tangential motion, the estimated radial
motion also deviates from the truth, because the
motion components are correlated with each
other.
Besides optical flow methods, some other tech-

niques were investigated for motion-compensated
image reconstruction. For example, the motion-
frozen techniquebySlomkaandcolleagues,47 orig-
inally applied to single-photon emission CT
(SPECT), involved detecting the epicardial and
endocardial surfaces and tracking their move-
ments, followedby extrapolation of themovements
of the surfaces to other points. The technique was
also applied in PET image reconstruction,8 result-
ing in significantly enhanced (P<.05) contrast and
contrast/noise ratios in fluorodeoxyglucose myo-
cardial viability images.

Reconstruction Methods

In the following sections, four general 4D recon-
struction approaches are reviewed: those in which
motion estimation is performed (1–3) before or (4)
during 4D image reconstruction.

1. Interiterative temporal smoothing: given the
estimated motion vectors enabling tracking of
any given voxel across the cardiac gates, this
approach imposes temporal smoothing
across the gated images after every iteration
of the reconstruction algorithm. Such an
approach was suggested by Brankov and
colleagues,48 who in addition replaced the
uniform-voxel framework with mesh modeling
within image reconstruction49 (an efficient
image description based on nonuniform
sampling; mesh nodes are placed more
densely in image regions having finer detail).
However, the investigators seem to have
abandoned this approach in favor of postre-
construction motion-compensated filtering in
later publications.50,51 Overall, spatial52,53 or
temporal54,55 interiteration filtering methods
are ad hoc (eg, are not proved to be conver-
gent). A more theoretically sound and more
popular approach is discussed next.
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2. Bayesian maximum a posteriori (MAP) recon-
struction: MAP methods56 attempt to address
the ill-posed nature of emission tomography
reconstruction via inclusion of spatial or
temporal priors.57 Instead of seeking an image
estimate f

!
that maximizes the Poisson log-

likelihood function Lð f!Þ as is the case with
the regular expectation-maximization (EM)
algorithm,58,59 MAP methods seek to maximize
the MAP function Lð f!Þ � bVð f!Þ, where Vð f!Þ
is a potential function that regularizes the
objective function (commonly by penalizing
intensity variations within spatial neighbor-
hoods), and b is the MAP hyperparameter to
be set by the user for the particular imaging
task. A common (although approximate) itera-
tive solution to the MAP formulation can be
reached via the one-step-late (OSL) approach
of Green,60 arriving at
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space data, P is the system matrix modeling
the probabilities of detection, and 1
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vector with all elements equal to 1.
In addition, Gravier and Yang61 used a MAP

formulation to encourage smoothing across
the gated frames, given knowledge of voxel
movements from the estimated motion vector
field. As an example, denoting the estimated
activity for a given gate q (q 5 1.Q) as f
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where the subscript j denotes the particular
voxel (j 5 1.J) in the image, and Mp/q

denotes the estimated motion matrix trans-
forming a given image f

!
q to its corresponding

distribution in gate p given the estimate
motion vectors. The investigators introduced
a generalized weighted formulation24,62 to
this expression to weight intergate variations
in voxel intensities depending on gate separa-
tion (higher weights for nearer gates).

A similar approach was taken by Lalush and
colleagues63,64 but the motion was assumed to
be known a priori. However, they obtained
similar results when no motion information
was considered (ie,Mp/q was set to the identity
matrix). This result may have been caused by
the limited resolution of their scanner, but has
been pursued similarly in several subsequent
works.65–68

3. The MAP-OSL algorithm (1) of Green60 is based
on an approximation (and breaks down for
large values of b). In addition, it is a nontrivial
task to select the parameters associated with
the prior/penalty term (which play an important
role in the image quality) and this is often
achieved through trial-and-error. These meth-
ods treat the same moving object as different
temporal reconstructions that are merely
temporally correlated. Nevertheless, a more
concrete approach would involve a truly 4D
approach, in which the estimated deformations
are incorporated within a unified cost function
to be optimized (for a single object). Such an
approach was proposed and investigated by
Qiao and colleagues,69 Li and colleagues,70

and Lamare and colleagues,71 although origi-
nally for respiratory gating applications but later
also used for cardiac gating.72 In this approach,
the measured nonrigid motion (estimated from
the gated images) is modeled in the image-
space component of the system matrix of the
EM algorithm, and a truly 4D EM reconstruction
algorithm has been achieved. This approach is
promising because of its accurate and com-
prehensive modeling of the relation of a moving
object to detected events. Introducing a time/
gate-varying system matrix P, including
decomposition73–75 into the geometric compo-
nent G, diagonal normalization N and attenua-
tion A matrices, as well as M1/q modeling the
motion transformation from the reference gate
1 to existing frame q (P5NAGM1/q), one
arrives at the 4D EM update algorithm to esti-
mate the image at the reference gate:
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This approach is analogous to motion-
corrected EM reconstructions in brain imaging
that move beyond purely correcting76–78 indi-
vidual events for motion and that result in modi-
fied sensitivity images to account for the impact
of motion on probabilities of detection.79–83
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4. Commonly in the literature, cardiac motion is
estimated after reconstruction of individual
gated frames; and in the techniques outlined
earlier, the extracted motion information is
used in subsequent 4D reconstructions to
yield enhanced images. However, Gilland and
colleagues22,23,42 hypothesized that, given the
close link between the image reconstruction
and motion estimation steps, a simultaneous
method of estimating the two is better able to
(1) reduce motion blur and compensate for
poor signal-to-noise (SNR) ratios and to (2)
improve the accuracy of the estimated motion.
Their proposedalgorithmworkedby2-stepmini-
mization of a joint energy functional term (which
included both image likelihood and motion-
matching terms). This work was also extended
from a 2-frame approach to the complete
cardiac cycle by Gilland and colleagues.84

The approach taken by Jacobson and
Fessler85,86 considered a parametric Poisson
model for gated PET measurements involving
the activity distribution as unknown as well as
a set of deformation parameters describing the
motion of the image throughout the scan (from
gate to gate). By maximizing the log-likelihood
for this model, a technique referred to as joint
estimation with deformation modeling was used
to determine both the image and deformation
parameter estimates jointly from the full set of
measured data. A similar motion-aware likeli-
hood function was used by Blume and
Fig. 2. Selected transverse, coronal, and sagittal slices for
(from left to right): ML-EM reconstruction of motion-conta
vidual gates (IG), 4D method (when motion is estimated fro
tion registration and summation (PRRS), 4D method when
proposed joint reconstruction (JR), and a motion compen
For comparison, the original image (OI) is shown in the la
A, Keil A, et al. Joint reconstruction of image and motion in
Imaging 2010;29(11):1896; with permission.)
colleagues,87 although using a distinct optimiza-
tion scheme and depicting more convincing
results, which is shown in Fig. 2. By comparison,
the techniquesdescribedearlierestimateasingle
image and N � 1 deformations, whereas the
method of Gilland and colleagues estimates N
images and N � 1 motion deformations, thus
involving a larger number of unknowns; the cost
function it uses does not involve deformations
in the log-likelihood term, thus potentially simpli-
fying the optimization task. The aforementioned
trade-off remains to be elaborately studied.

Dual-Gated Imaging

Respiratory motion of the heart is comparable with
myocardial wall thickness88 and introduces consid-
erable degradations in quantitative accuracy of
images89 and quality of polar maps.90 Increasingly
more attention has been paid to dual gating of the
heart in human and animal studies.88,91–100 Different
hardware gating devices developed in academic
and corporate settings were exploited to achieve
this goal and are described in the article by
Bettinardi and colleagues elsewhere in this issue.

Rigid Versus Nonrigid Modeling of the
Respiratory Motion of the Heart

Respiratory motion of the heart has been modeled
as rigid within several PET89,101 and SPECT102 re-
constructions. There exists some evidence to this
end: analysis103 of 20 sets of 4D respiratory-gated
different reconstruction scenarios for simulated data
minated data (MC), ML-EM reconstruction of the indi-
m preliminary reconstructions) (4D-a), postreconstruc-
different gridding is used to estimate motion (4D-b),

sating reconstruction based on the ideal motion (IM).
st column. (Reprinted from Blume M, Martinez-Moller
gated positron emission tomography. IEEE Trans Med
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image data from normal and abnormal humans re-
vealed respiratory motion of the heart (as well as
liver, stomach, spleen, and kidneys) to involve for
the most part rigid translations downward and to
the interior as the diaphragm contracts during
inspiration. Furthermore, MR scans performed on
15 normal individuals depicted predominantly
translational nature of respiratory-induced move-
ments in upper abdominal organs.104

Nonetheless, respiratory motion does induce
some nonrigid movements in the heart, as it is
pushed and pulled by the diaphragm and other
connected tissue: for instance, gated CT studies
on dogs105 recorded an average change of 12%
in the total end-diastolic heart volume during forced
positive pressure inspiration at 15 cm H2O. Using
echocardiography, similar shape changes were
found in human individuals.106 Furthermore, Klein
and colleagues99 performed quantitative measures
of respiratory motion of the heart as extracted from
10 respiratory-gated PET studies. Translations
between end-inspiration and end-expiration were
often greater than 10 mm and ranged from 1 to
more than 20 mm (rigid motion). Moreover, the LV
showed nonnegligible compression factors. The
LV was generally largest at end-inspiration and
smallest at end-expiration. Nonrigid motion was
close to 10% in several cases, computed as the
product of the 3 extension factors along the x, y,
and z directions.

The extension factors were largest along the
superior/inferior axis (w5%), which, given the
typical 80-mm to 100-mm dimension of the LV
along this direction, would result in a heart image
that would be 4 to 5 mm too small if motion was
assumed simply rigid. Compared with the average
10-mm thickness of the left ventricular wall, this
scaling error may therefore be considerable.
However, with the ECAT EXACT HR scanner
(CTI/Siemens, Knoxville, TN), only small improve-
ments were observed99 after performing nonrigid
motion modeling. It may be concluded that appro-
priateness of modeling respiratory motion of the
heart as rigid versus nonrigid depends on the reso-
lution of the PET scanner. With wider acceptance
of reconstruction algorithms incorporating resolu-
tion modeling (also referred to as point-spread-
function (PSF) modeling),107–113 and the resulting
resolution improvements down to the 2-mm to 3-
mm range in clinical scanners, it is expected that
nonrigid modeling approaches would serve as
more reliable and accurate models of respiratory
motion of the heart. Efforts to this end include:
(1) use of affine motion models (strictly speaking,
an affine model is nonrigid, but in the literature,
often it is a class of its own (ie, rigid vs affine vs
nonrigid models): this model extends the rigid
motion model (6 parameters of rotation and trans-
lation) to also allow 3 scale71 and 3 skew parame-
ters99 and (2) use of nonrigid B-spline models.91

Reconstruction Methods

Modeling respiratory motion of the heart as rigid,
Livieratos and colleagues101 transformed indi-
vidual lines of response (LORs) (ie, via translations
and rotations) to compensate for respiratory
motion, followed by standard reconstructions of
individual cardiac-gated datasets. Nonetheless,
this approach, although appropriately compen-
sating for normalization given original LOR coordi-
nates, did not compensate for duration of time
each LOR spends outside the field-of-view
because of motion, which can be compensated
via multiplication factors applied to the motion-
compensated events114 or modifying the sensi-
tivity images through the 4D EM formalism of
Eqs. 3 and 4. Invoking the latter approach, Rah-
mim and colleagues89 and Chen and colleagues91

performed 4D respiratory motion compensation
for each cardiac phase. A simulated example
from Ref.89 is shown in Fig. 3, wherein short-
axis reconstructed images, for a given cardiac
gate, show noisy reconstructions with additional
respiratory gating (left), blurred images with no
respiratory gating (middle), and improved defini-
tion with favorable noise using 4D reconstruction
approach. Receiver operating characteristic anal-
ysis involving numerical channelized Hotelling
observer studies revealed significant improve-
ments (P<.0001) for the task of perfusion defect
detection using 4D EM respiratory motion
compensation.

It is possible to pursue 4D reconstruction
methods that incorporate both cardiac and respi-
ratory gating information, as pursued by Blume
and colleagues,87 within a comprehensive dual-
gated framework using 24 total gates. Nonethe-
less, in practice, the common approach has
been to use 4D reconstruction methods to
compensate for respiratory motion within each
cardiac gate, followed by postreconstruction
registration and summing of cardiac-gated
images.91,115

Five-Dimensional Motion-Corrected Image
Reconstruction

Dynamic imaging of the heart enables quantifica-
tion of tracer uptake, providing valuable informa-
tion about heart function, including the abilities to
quantify myocardial blood flow and coronary flow
reserve,116,117 thus providing several powerful
applications.118–124 Nonetheless, this modality
has remained primarily limited to research, and



Fig. 3. Short-axis reconstructed images of simulated Rb-82 myocardial perfusion data with 4 noise realizations
shown in each set, for the end-diastolic cardiac gate using: (left) end-expiration respiratory gate 1, (middle)
respiratory-nongated data, and (right) data processed using 4D EM reconstructions.
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remains to be widely adopted in clinical practice;
this has been especially related to amplified noise
levels caused by subdivision of the data into short-
er frames. Novel 4D reconstruction algorithms,
aiming to enhance quality and quantitative accu-
racy of dynamic images, constitute a highly active
front and have been reviewed elsewhere.10,125

Here we discuss some works that have attempted
to merge the extra dimensions of cardiac gating
and tracer redistribution.
An approach was to use the list-mode capability

to first reconstruct the data as gated but static to
estimate cardiac motion, followed by application
of 4D reconstruction to gated datasets for each
dynamic frame.72 An alternative was to perform
4D image reconstruction to dynamic datasets for
each given cardiac gate, followed by postrecon-
struction filtering across the cardiac gates.126,127

By contrast, Jin and colleagues128 and Gravier
and colleagues62 pursued variations of a more
sophisticated five-dimensional (5D) approach of
incorporating both dimensionswithin the reconstruc-
tion: they performed preliminary reconstructions to
extract the motion vector field; the motion infor-
mation was then incorporated within objective
functions that included weighted variants of (2)
penalizing intercardiac-gate intensity variations,
although further generalized to also include penal-
ization amongst the dynamic frames. The result-
ing objective functions were then solved using
gradient descent methods. These methods were
further refined in Ref.129 to include a convergent
yet fast (ordered subset) reconstruction algorithm
framework. Alternatively, Niu and colleagues130

pursued direct reconstruction of parametric im-
ages (from projection data) and incorporated esti-
mated motion vectors within a weighted variant of
penalty expression (Eq. 2).
Verhaeghe and colleagues12 used B-spline

temporal basis functions to represent both the
temporal and gate dimensions within 5D EM
formulation, resulting in improved noise properties
and maintaining sharply defined images (however,
see note of caution in introduction regarding treat-
ment of motion in the same sense as dynamic
tracer evolution).
A different approach to this problem by Shi and

Karl131,132 involved level set methods wherein
a variational framework was developed that
collectively incorporated region boundaries (as-
sumed to evolve because of motion) and intensi-
ties within them. A coordinate descent algorithm
was used alternately minimizing the overall energy
function with respect to the boundaries and the
intensity values. A downside of this approach is
that the intensity is assumed to be constant within
the defined regions, although additive noise
models were included.
Impact of Mismatched AC

When respiratory gating is not used (ie, emission
images are contaminated by respiratory motion),
the use of high-speed CT images that capture
one phase in the respiratory cycle can lead to AC
mismatch, visible artifacts, and notable quantita-
tive degradations.133,134 Potential solutions to
this situation include cine CT, CT mapping (using
estimated PETmotion vectors, 4D-CT acquisition),
and many other approaches. This issue is covered
in detail in the article by Pan and Zaidi elsewhere in
this issue.
With respiratory gating, as also used in 4D

reconstruction methods, application of (1) mis-
matched or (2) averaged/cine CT for AC can also
lead to quantitative degradations,135 and so forth.
Therefore, phase-matching methods seem to be
the methods of choice.136 Unlike respiratory
motion, cardiac motion is less important in terms
of mismatch between emission and transmission
images for AC because the heart sac does not
really move with cardiac beating.
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BEYOND THE HEART: OTHER IMAGING
APPLICATIONS INVOLVING RESPIRATORY
MOTION CORRECTION

The 4Dmethodsmentioned in the previous section
(for cardiac motion correction) are also applicable
to 4D respiratory motion correction. Respiratory
motion estimation tasks for different organs are
discussed first, as incorporated within 4D recon-
struction methods.

Respiratory Motion Estimation Methods

Respiratory motion has been modeled as rigid,102

affine,99,137 and nonrigid.43,138–140 Rigid motion
and affine deformation modeling were primarily
used in conjunction with event rebinning for the
correction of respiratory motion.71 To rebin the
PET data by aligning the LOR of each event to
the reference position, the motion can be modeled
only as rigid or affine because mapping of an LOR
is independent of the event location. Modeling
respiratory motion as nonrigid thus requires other
motion correction techniques, including incorpo-
rating the correction in the image reconstruction
process141 and after reconstruction.142

When motion is treated as rigid, it has been
quantified by tracking translations of some center
of mass along the axial direction102,143 or in 3D.144

By contrast, the affine deformation model can be
solved using image registration techniques to
minimize the least squares difference99 or mutual
information.137 Nonrigid motion estimation is
usually treated as a minimization problem with
the cost function consisting of (1) a similarity
measure between the image frames and (2) a reg-
ularization term on the estimated deformation
field. Algorithms differ in the measurement of
the image similarity and the selection of the
regularization. In the following sections, several
representative nonrigid motion estimation algo-
rithms are discussed.

Dawood and colleagues142 proposed an optical
flow-based approach in the process of postrecon-
struction summation of aligned respiratory gates.
The method assumed small motion (for the Taylor
expansion) and a locally constant flow (as ameans
to regularize the problem) per the algorithm devel-
oped by Lucas and Kanade (LK).145 The motion
needed to be calculated between adjacent gates
(to ensure small motion) rather than between the
target gate and successive gates. The LK algo-
rithm is comparatively robust in the presence of
noise. However, the flow information fades out
quickly across motion boundaries. Dawood and
colleagues43 later advanced the local optical
flow algorithm by combining it with a global optical
flow algorithm (ie, the method of Horn and
Schunck [HS]).36 The HS algorithm uses the
smoothness in flow as the constraint and fills in
the missing flow information in inner parts of
homogeneous objects from the motion bound-
aries. The respiratory motion was shown to be
reduced in the motion-corrected gated images
with the correlation coefficient as the criteria.
The combined local and global optical flow algo-
rithm was shown to perform better than the local
algorithm.

In the method proposed by Ue and
colleagues,140 the deformation field was defined
to consist of control points given as the intersec-
tion points of grid lines. By moving each control
point, the floating image was deformed. The
movement at an arbitrary location in the deforma-
tion field was calculated by trilinear interpolation of
neighbor control points. In their method, the simi-
larity measure between the reference images and
the deformed image was based on the principle
that the total activity remains the same after the
deformation. An expansion ratio, computed by
volumes of tetrahedral, was applied on the
deformed image to eliminate the discrepancy
between the deformed result and the principle. A
smoothness constraint in the deformation served
as regularization in the objective function, which
was minimized using the simulated annealing
algorithm.

Bai and Brady138,139 proposed B-spline deform-
able registration algorithms in respiratory motion
correction of gated PET images. The control point
lattice was assumed as a Markov random field
(MRF) to regularize the deformation field. B-splines
have the advantage of being smooth functions with
explicit derivatives and finite support. Both the
gated images and the transformation between
them were interpolated using cubic B-spline func-
tions. The MRF was assumed to follow the Gibbs
distribution based on the Hammersley-Clifford
theorem.146Gradientdescentwasused tominimize
the cost function, consisting of the mean squared
difference between one image and another
deformed image and the regularization term.
Reconstruction Methods

Respiratory motion-compensated image recon-
struction methods can be grouped into several
categories. One category of methods rebins the
PET data by aligning the LORs of each event to
the reference position using the estimated motion.
Because the event-rebinning method mapping of
an LOR is independent of the event location, only
rigid or affine motion can be incorporated in the
process, which can be a viable approach when
focusing on specific tumors or organs.71 Such an
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approachwasoriginally developed in brain imaging
applications (e.g. Ref.78).
A considerably more popular category of

methods incorporates the estimated motion within
the system matrix for image reconstruction.
Nonrigid motion can be applied within the recon-
struction process. These techniques use a time/
gate-varying system matrix and integrate PET
projection data acquired at different time bins into
a single comprehensive objective function. The
4D EM formulation (3–4) by Qiao and colleagues,69

Li and colleagues,70 and Lamare and colleagues,71

as discussed in the context of Eq. 3, were originally
developed for respiratory motion correction. On
advent of simultaneous PET/MR imaging, the
recent work by Guerin and colleagues147 used
respiratory motion estimated from tagged MR
images to reduce motion blur in whole-body PET
studies of torso. This motion correction technique
and more recent work by the same group148 fall
into this category as well. The time/gate-varying
system matrix method was generalized by Qiao
and colleagues149 to incorporate motions only
within a user-defined region of interest. In par-
ticular, Li and colleagues70 considered both
a phantom experiment and a clinical study with
a pancreatic tumor. They showed increased
SNR in images reconstructed with the motion-
compensated 4D PET reconstruction over that in
images from both regular nongated reconstruction
and purely gated reconstruction. The motion arti-
facts were also clearly reduced in the 4D recon-
structed images. Fig. 4 shows reconstructions
obtained using (1) nongated PET, (2) conventional
purely gated PET, and (3) the 4D EM algorithm
using the entire dataset. The SNR ratios were
2.21, 1.83, and 4.17 for the three approaches.
Reyes and colleagues150 pursued an approach

applicable to nongated datasets. A respiratory
motion model constructed from MR images was
adapted to each patient’s anatomy through affine
registrations. The resulting estimated motion was
then incorporated into the system matrix of the
EM algorithm. Compared with the second cate-
gory methods, this approach does not require
motion estimated beforehand or gating. Neverthe-
less, the robustness of the model-based motion
estimation method given the presence of irregular
respiratory patterns as well as interpatient respira-
tory variations remains questionable. Furthermore,
analogous investigations in brain imaging (ie,
modeling motion contamination within the system
matrix without correction of events)151 have shown
suboptimal convergence properties.
Fig. 4. Reconstructed images of 3D
ungated PET obtained by summing
all the acquired 4D-PET projections
(top), conventional 4D PET (middle),
and model-based 4D PET reconstruc-
tion for a clinical study with pancre-
atic tumor. (Reprinted from Li T,
Thorndyke B, Schreibmann E, et al.
Model-based image reconstruction
for four-dimensional PET. Med Phys
2006;33(5):1296; with permission.)
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AREAS OF FUTURE RESEARCH

In this section, some areas of research in motion
correction are outlined that remain open ques-
tions, demanding further inquiries and research:

a. Although theoretic comparisons have been
made between postreconstruction and 4D
reconstruction methods in which motion is
preestimated,8,9 it remains an open task to
theoretically analyze methods in which cardiac
or respiratory motion are estimated before or
simultaneously with the image reconstruction
task. Such analysis might provide insights
into further optimization of both categories
mentioned earlier, because experimental com-
parisons have not shown30,37,42,85,86 a clear
advantage of one approach over the other.
Development and validation of optimum regu-
larizers, given the distinct spatial resolution
properties of motion correction algorithms,22

is also an area of interest.
b. In dual-gating applications, cardiac versus

respiratory gates are commonly treated differ-
ently in 4D motion-corrected cardiac imaging
applications, wherein the latter are more com-
monly incorporated within 4D methods, with
the former registered and summed after recon-
struction.91,115 However, it is plausible to
imagine a combined overall sequence of gates
incorporated within the 4D reconstruction
framework.37 Comparison between these two
schemes remains an area of interest.

c. Validation and assessment in clinical setting
of algorithmic developments in medical imaging
is inherently difficult and sometimes uncon-
vincing, particularly when applied to clinical
data in the absence of a gold standard, although
some approaches to circumvent this limitation
have been suggested.152–154 There is a clear
need for guidelines to evaluate image recon-
struction and processing techniques in medical
imaging research. Task-based assessment of
image quality is an emerging field, which will
likely help address some of these issues.

d. One of the most active areas of research and
development in medical imaging has been the
advanced physical anthropomorphic phantoms
and computational models that represent the
human anatomy155 and their integration in
advanced 4D simulation of time-dependent
geometries.156 Incorporation of accurate
models of cardiac and respiratory physiology
into the current 4D extended Cardiac-Torso
(XCAT) model was a significant step forward to
account for inherent cardiac and respiratory
motion not considered in the previous
models.157 Besides providing realistic and flex-
ible simulation of normal cardiac motion, Veress
and colleagues158,159 investigated incorporation
of a finite-element mechanical model of the LV
to accurately model motion abnormalities such
as myocardial ischemia and infarction. Besides
simulating cardiac motion in the phantom, this
model may be applied as a prior in cardiac
motion estimation from emission tomography
images to recover the true cardiac motion with
twist rather than the apparent motion such as
that estimated by optical flow methods.9

Likewise, many physical static anthropo-
morphic phantoms were developed in corpo-
rate settings but few dynamic torso phantoms
are commercially available and all of them
were specifically designed for the assessment
of cardiac scanning protocols and ejection
fraction calculation software (eg, the dynamic
cardiac phantom available from Data Spec-
trum, Hillsborough, NC). Many academic
investigators built dynamic physical phantoms
that meet their research needs in cardiac
imaging.160–162 However, similar to commer-
cial systems referred to earlier, virtually none
of them incorporate respiratory motion
modeling. More advanced technologies allow
the construction of dynamic phantoms, allow-
ing modeling of respiratory motion.163 One
interesting design is the platform developed
by Fitzpatrick and colleagues,164 which is
capable of programmable irregular longitudinal
motion (either artificially generated on a
spreadsheet or extracted from respiratory
monitoring files) to simulate intrafractional
respiratory motion.
SUMMARY

This article summarizes important themes in the
emerging field of 4D PET imaging, as applied to
cardiac and/or respiratory motion compensation.
A wide-ranging choice of techniques are available
in research settings but have not yet been used in
the clinic. In advanced cardiac and respiratory
motion correction schemes, this review has wit-
nessed a general trend to move beyond the noisy
images achieved by cardiac-gated and respira-
tory-gated data which are individually recon-
structed, and instead, advanced techniques are
seen to make use of novel motion estimation and
image reconstruction applications to improve
image quality with higher SNR and spatial resolu-
tion. There seems to be a general trend toward
the use of increasingly sophisticated software
for 4D reconstruction in cardiac-gated and
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respiratory-gated PET imaging. Strategies that
endeavor to apply direct 4DPET image reconstruc-
tion techniques to motion compensation seem
promising but remain to be further refined or con-
strained to guarantee meaningful reconstructions.
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